Grafen for en lineær funktion

Ligesom ved alle andre funktioner kan man tegne lineære funktioner ved at lave et sildeben. Der findes dog en hurtigere metode. Det er nemlig sådan at:

Eksempel 1

📌

Lad os prøve at tegne funktionen $$f(x)=2x-3$$. Vi kan se at $$b=-3$$, så funktionen skærer y-aksen i $$-3$$:

Graf

Fordi $$a=2$$ ved vi, at hver gang vi går $$1$$ ud af x-aksen, skal vi gå $$2$$ op:

Graf

Vi kan nu tegne grafen for $$f(x)$$ gennem punkterne:

Graf

Øvelse 1

📌

Tegn med papir og blyant en skitse af nedenstående funktioner vha. metoden beskrevet ovenover:

  1. $$f(x)=0{,}5x+2$$

    Graf

  2. $$f(x)=x+1$$

    Graf

  3. $$f(x)=-2x+1$$

    Graf

  4. $$f(x)=5$$

    Graf

  5. $$f(x)=0$$

    Markeret med rød:
    Graf

Øvelse 2

📌

Bestem forskriften for følgende funktioner:

  1. Funktionen $$f$$:

    $$f(x)=0{,}5x-1$$

    Graf
  2. Funktionen $$g$$:

    $$g(x)=-x+1$$

    Graf
  3. Funktionen $$h$$:

    $$h(x)=-1$$

    Graf
  4. Funktionen $$i$$:

    $$i(x)=x$$

    Graf

Grafen gennem to punkter

Det er klart at hvis man har to punkter, så findes der netop én linje igennem punkterne. Vi kan bestemme en forskrift for den lineære funktion ved at benytte følgende sætning:

Sætning 1

📌

Lad $$f(x)=ax+b$$ være en lineær funktion og antag at $$f$$ går igennem punkterne $$(x_1,y_1)$$ og $$(x_2,y_2)$$. Da kan konstanterne $$a$$ og $$b$$ bestemmes ved formlerne: $$$a=\frac{y_2-y_1}{x_2-x_1}\quad\textrm{ og }\quad b=y_1-ax_1.$$$

Eksempel 2

📌

Vi vil bestemme forskriften for linjen gennem punkterne $$(1,2)$$ og $$(4,8)$$.

Sammelinger vi med sætning 1 får vi at $$x_1=1$$, $$y_1=2$$, $$x_2=4$$ og $$y_2=8$$.

Vi regner først $$a$$: $$$a=\frac{y_2-y_1}{x_2-x_1}=\frac{8-2}{4-1}=2,$$$ og vi kan så regne $$b$$: $$$b=y_1-ax_1=2-2\cdot 1=0.$$$

Vi sætter de fundne værdier ind $$y=ax+b=2x+0=2x$$. Altså er forskriften $$y=2x$$.

Øvelse 3

📌
Bestem vha. sætning 1 forskriften for den lineære funktion $$f$$ gennem punkterne $$(2,3)$$ og $$(4,11)$$.

$$f(x)=4x-5$$.

Øvelse 4

📌
Bestem vha. sætning 1 forskriften for den lineære funktion $$f$$ gennem punkterne $$(5,-3)$$ og $$(12,-10)$$.

$$f(x)=-x+2$$.

Øvelse 5

📌
Ligger punktet $$(1270,-2537)$$ på grafen for funktionen $$f(x)=-2x+4$$? Kan du finde ud af den uden at bruge Geogebra?

Næh nej, det ligger ikke på grafen.