MATHHXB|Gå til Mat-A|Download PDF|Info

MATHHX B

\(\newcommand{\footnotename}{footnote}\) \(\def \LWRfootnote {1}\) \(\newcommand {\footnote }[2][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\newcommand {\footnotemark }[1][\LWRfootnote ]{{}^{\mathrm {#1}}}\) \(\let \LWRorighspace \hspace \) \(\renewcommand {\hspace }{\ifstar \LWRorighspace \LWRorighspace }\) \(\newcommand {\mathnormal }[1]{{#1}}\) \(\newcommand \ensuremath [1]{#1}\) \(\newcommand {\LWRframebox }[2][]{\fbox {#2}} \newcommand {\framebox }[1][]{\LWRframebox } \) \(\newcommand {\setlength }[2]{}\) \(\newcommand {\addtolength }[2]{}\) \(\newcommand {\setcounter }[2]{}\) \(\newcommand {\addtocounter }[2]{}\) \(\newcommand {\arabic }[1]{}\) \(\newcommand {\number }[1]{}\) \(\newcommand {\noalign }[1]{\text {#1}\notag \\}\) \(\newcommand {\cline }[1]{}\) \(\newcommand {\directlua }[1]{\text {(directlua)}}\) \(\newcommand {\luatexdirectlua }[1]{\text {(directlua)}}\) \(\newcommand {\protect }{}\) \(\def \LWRabsorbnumber #1 {}\) \(\def \LWRabsorbquotenumber "#1 {}\) \(\newcommand {\LWRabsorboption }[1][]{}\) \(\newcommand {\LWRabsorbtwooptions }[1][]{\LWRabsorboption }\) \(\def \mathchar {\ifnextchar "\LWRabsorbquotenumber \LWRabsorbnumber }\) \(\def \mathcode #1={\mathchar }\) \(\let \delcode \mathcode \) \(\let \delimiter \mathchar \) \(\def \oe {\unicode {x0153}}\) \(\def \OE {\unicode {x0152}}\) \(\def \ae {\unicode {x00E6}}\) \(\def \AE {\unicode {x00C6}}\) \(\def \aa {\unicode {x00E5}}\) \(\def \AA {\unicode {x00C5}}\) \(\def \o {\unicode {x00F8}}\) \(\def \O {\unicode {x00D8}}\) \(\def \l {\unicode {x0142}}\) \(\def \L {\unicode {x0141}}\) \(\def \ss {\unicode {x00DF}}\) \(\def \SS {\unicode {x1E9E}}\) \(\def \dag {\unicode {x2020}}\) \(\def \ddag {\unicode {x2021}}\) \(\def \P {\unicode {x00B6}}\) \(\def \copyright {\unicode {x00A9}}\) \(\def \pounds {\unicode {x00A3}}\) \(\let \LWRref \ref \) \(\renewcommand {\ref }{\ifstar \LWRref \LWRref }\) \( \newcommand {\multicolumn }[3]{#3}\) \(\require {textcomp}\) \(\require {colortbl}\) \(\let \LWRorigcolumncolor \columncolor \) \(\renewcommand {\columncolor }[2][named]{\LWRorigcolumncolor [#1]{#2}\LWRabsorbtwooptions }\) \(\let \LWRorigrowcolor \rowcolor \) \(\renewcommand {\rowcolor }[2][named]{\LWRorigrowcolor [#1]{#2}\LWRabsorbtwooptions }\) \(\let \LWRorigcellcolor \cellcolor \) \(\renewcommand {\cellcolor }[2][named]{\LWRorigcellcolor [#1]{#2}\LWRabsorbtwooptions }\) \(\newcommand {\tothe }[1]{^{#1}}\) \(\newcommand {\raiseto }[2]{{#2}^{#1}}\) \(\newcommand {\LWRsiunitxEND }{}\) \(\def \LWRsiunitxang #1;#2;#3;#4\LWRsiunitxEND {\ifblank {#1}{}{\num {#1}\degree }\ifblank {#2}{}{\num {#2}^{\unicode {x2032}}}\ifblank {#3}{}{\num {#3}^{\unicode {x2033}}}}\) \(\newcommand {\ang }[2][]{\LWRsiunitxang #2;;;\LWRsiunitxEND }\) \(\def \LWRsiunitxdistribunit {}\) \(\newcommand {\LWRsiunitxENDTWO }{}\) \(\def \LWRsiunitxprintdecimalsubtwo #1,#2,#3\LWRsiunitxENDTWO {\ifblank {#1}{0}{\mathrm {#1}}\ifblank {#2}{}{{\LWRsiunitxdecimal }\mathrm {#2}}}\) \(\def \LWRsiunitxprintdecimalsub #1.#2.#3\LWRsiunitxEND {\LWRsiunitxprintdecimalsubtwo #1,,\LWRsiunitxENDTWO \ifblank {#2}{}{{\LWRsiunitxdecimal }\LWRsiunitxprintdecimalsubtwo #2,,\LWRsiunitxENDTWO }}\) \(\newcommand {\LWRsiunitxprintdecimal }[1]{\LWRsiunitxprintdecimalsub #1...\LWRsiunitxEND }\) \(\def \LWRsiunitxnumplus #1+#2+#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxprintdecimal {#1}}{\ifblank {#1}{\LWRsiunitxprintdecimal {#2}}{\LWRsiunitxprintdecimal {#1}\unicode {x02B}\LWRsiunitxprintdecimal {#2}}}\LWRsiunitxdistribunit }\) \(\def \LWRsiunitxnumminus #1-#2-#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumplus #1+++\LWRsiunitxEND }{\ifblank {#1}{}{\LWRsiunitxprintdecimal {#1}}\unicode {x02212}\LWRsiunitxprintdecimal {#2}\LWRsiunitxdistribunit }}\) \(\def \LWRsiunitxnumpmmacro #1\pm #2\pm #3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumminus #1---\LWRsiunitxEND }{\LWRsiunitxprintdecimal {#1}\unicode {x0B1}\LWRsiunitxprintdecimal {#2}\LWRsiunitxdistribunit }}\) \(\def \LWRsiunitxnumpm #1+-#2+-#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumpmmacro #1\pm \pm \pm \LWRsiunitxEND }{\LWRsiunitxprintdecimal {#1}\unicode {x0B1}\LWRsiunitxprintdecimal {#2}\LWRsiunitxdistribunit }}\) \(\newcommand {\LWRsiunitxnumscientific }[2]{\ifblank {#1}{}{\ifstrequal {#1}{-}{-}{\LWRsiunitxprintdecimal {#1}\times }}10^{\LWRsiunitxprintdecimal {#2}}\LWRsiunitxdistribunit }\) \(\def \LWRsiunitxnumD #1D#2D#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumpm #1+-+-\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\) \(\def \LWRsiunitxnumd #1d#2d#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumD #1DDD\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\) \(\def \LWRsiunitxnumE #1E#2E#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumd #1ddd\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\) \(\def \LWRsiunitxnume #1e#2e#3\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnumE #1EEE\LWRsiunitxEND }{\mathrm {\LWRsiunitxnumscientific {#1}{#2}}}}\) \(\def \LWRsiunitxnumx #1x#2x#3x#4\LWRsiunitxEND {\ifblank {#2}{\LWRsiunitxnume #1eee\LWRsiunitxEND }{\ifblank {#3}{\LWRsiunitxnume #1eee\LWRsiunitxEND \times \LWRsiunitxnume #2eee\LWRsiunitxEND }{\LWRsiunitxnume #1eee\LWRsiunitxEND \times \LWRsiunitxnume #2eee\LWRsiunitxEND \times \LWRsiunitxnume #3eee\LWRsiunitxEND }}}\) \(\newcommand {\num }[2][]{\LWRsiunitxnumx #2xxxxx\LWRsiunitxEND }\) \(\newcommand {\si }[2][]{\mathrm {\gsubstitute {#2}{~}{\,}}}\) \(\def \LWRsiunitxSIopt #1[#2]#3{\def \LWRsiunitxdistribunit {\,\si {#3}}{#2}\num {#1}\def \LWRsiunitxdistribunit {}}\) \(\newcommand {\LWRsiunitxSI }[2]{\def \LWRsiunitxdistribunit {\,\si {#2}}\num {#1}\def \LWRsiunitxdistribunit {}}\) \(\newcommand {\SI }[2][]{\ifnextchar [{\LWRsiunitxSIopt {#2}}{\LWRsiunitxSI {#2}}}\) \(\newcommand {\numlist }[2][]{\text {#2}}\) \(\newcommand {\numrange }[3][]{\num {#2}\ \LWRsiunitxrangephrase \ \num {#3}}\) \(\newcommand {\SIlist }[3][]{\text {#2}\,\si {#3}}\) \(\newcommand {\SIrange }[4][]{\num {#2}\,#4\ \LWRsiunitxrangephrase \ \num {#3}\,#4}\) \(\newcommand {\tablenum }[2][]{\mathrm {#2}}\) \(\newcommand {\ampere }{\mathrm {A}}\) \(\newcommand {\candela }{\mathrm {cd}}\) \(\newcommand {\kelvin }{\mathrm {K}}\) \(\newcommand {\kilogram }{\mathrm {kg}}\) \(\newcommand {\metre }{\mathrm {m}}\) \(\newcommand {\mole }{\mathrm {mol}}\) \(\newcommand {\second }{\mathrm {s}}\) \(\newcommand {\becquerel }{\mathrm {Bq}}\) \(\newcommand {\degreeCelsius }{\unicode {x2103}}\) \(\newcommand {\coulomb }{\mathrm {C}}\) \(\newcommand {\farad }{\mathrm {F}}\) \(\newcommand {\gray }{\mathrm {Gy}}\) \(\newcommand {\hertz }{\mathrm {Hz}}\) \(\newcommand {\henry }{\mathrm {H}}\) \(\newcommand {\joule }{\mathrm {J}}\) \(\newcommand {\katal }{\mathrm {kat}}\) \(\newcommand {\lumen }{\mathrm {lm}}\) \(\newcommand {\lux }{\mathrm {lx}}\) \(\newcommand {\newton }{\mathrm {N}}\) \(\newcommand {\ohm }{\mathrm {\Omega }}\) \(\newcommand {\pascal }{\mathrm {Pa}}\) \(\newcommand {\radian }{\mathrm {rad}}\) \(\newcommand {\siemens }{\mathrm {S}}\) \(\newcommand {\sievert }{\mathrm {Sv}}\) \(\newcommand {\steradian }{\mathrm {sr}}\) \(\newcommand {\tesla }{\mathrm {T}}\) \(\newcommand {\volt }{\mathrm {V}}\) \(\newcommand {\watt }{\mathrm {W}}\) \(\newcommand {\weber }{\mathrm {Wb}}\) \(\newcommand {\day }{\mathrm {d}}\) \(\newcommand {\degree }{\mathrm {^\circ }}\) \(\newcommand {\hectare }{\mathrm {ha}}\) \(\newcommand {\hour }{\mathrm {h}}\) \(\newcommand {\litre }{\mathrm {l}}\) \(\newcommand {\liter }{\mathrm {L}}\) \(\newcommand {\arcminute }{^\prime }\) \(\newcommand {\minute }{\mathrm {min}}\) \(\newcommand {\arcsecond }{^{\prime \prime }}\) \(\newcommand {\tonne }{\mathrm {t}}\) \(\newcommand {\astronomicalunit }{au}\) \(\newcommand {\atomicmassunit }{u}\) \(\newcommand {\bohr }{\mathit {a}_0}\) \(\newcommand {\clight }{\mathit {c}_0}\) \(\newcommand {\dalton }{\mathrm {D}_\mathrm {a}}\) \(\newcommand {\electronmass }{\mathit {m}_{\mathrm {e}}}\) \(\newcommand {\electronvolt }{\mathrm {eV}}\) \(\newcommand {\elementarycharge }{\mathit {e}}\) \(\newcommand {\hartree }{\mathit {E}_{\mathrm {h}}}\) \(\newcommand {\planckbar }{\mathit {\unicode {x210F}}}\) \(\newcommand {\angstrom }{\mathrm {\unicode {x212B}}}\) \(\let \LWRorigbar \bar \) \(\newcommand {\barn }{\mathrm {b}}\) \(\newcommand {\bel }{\mathrm {B}}\) \(\newcommand {\decibel }{\mathrm {dB}}\) \(\newcommand {\knot }{\mathrm {kn}}\) \(\newcommand {\mmHg }{\mathrm {mmHg}}\) \(\newcommand {\nauticalmile }{\mathrm {M}}\) \(\newcommand {\neper }{\mathrm {Np}}\) \(\newcommand {\yocto }{\mathrm {y}}\) \(\newcommand {\zepto }{\mathrm {z}}\) \(\newcommand {\atto }{\mathrm {a}}\) \(\newcommand {\femto }{\mathrm {f}}\) \(\newcommand {\pico }{\mathrm {p}}\) \(\newcommand {\nano }{\mathrm {n}}\) \(\newcommand {\micro }{\mathrm {\unicode {x00B5}}}\) \(\newcommand {\milli }{\mathrm {m}}\) \(\newcommand {\centi }{\mathrm {c}}\) \(\newcommand {\deci }{\mathrm {d}}\) \(\newcommand {\deca }{\mathrm {da}}\) \(\newcommand {\hecto }{\mathrm {h}}\) \(\newcommand {\kilo }{\mathrm {k}}\) \(\newcommand {\mega }{\mathrm {M}}\) \(\newcommand {\giga }{\mathrm {G}}\) \(\newcommand {\tera }{\mathrm {T}}\) \(\newcommand {\peta }{\mathrm {P}}\) \(\newcommand {\exa }{\mathrm {E}}\) \(\newcommand {\zetta }{\mathrm {Z}}\) \(\newcommand {\yotta }{\mathrm {Y}}\) \(\newcommand {\percent }{\mathrm {\%}}\) \(\newcommand {\meter }{\mathrm {m}}\) \(\newcommand {\metre }{\mathrm {m}}\) \(\newcommand {\gram }{\mathrm {g}}\) \(\newcommand {\kg }{\kilo \gram }\) \(\newcommand {\of }[1]{_{\mathrm {#1}}}\) \(\newcommand {\squared }{^2}\) \(\newcommand {\square }[1]{\mathrm {#1}^2}\) \(\newcommand {\cubed }{^3}\) \(\newcommand {\cubic }[1]{\mathrm {#1}^3}\) \(\newcommand {\per }{\,\mathrm {/}}\) \(\newcommand {\celsius }{\unicode {x2103}}\) \(\newcommand {\fg }{\femto \gram }\) \(\newcommand {\pg }{\pico \gram }\) \(\newcommand {\ng }{\nano \gram }\) \(\newcommand {\ug }{\micro \gram }\) \(\newcommand {\mg }{\milli \gram }\) \(\newcommand {\g }{\gram }\) \(\newcommand {\kg }{\kilo \gram }\) \(\newcommand {\amu }{\mathrm {u}}\) \(\newcommand {\nm }{\nano \metre }\) \(\newcommand {\um }{\micro \metre }\) \(\newcommand {\mm }{\milli \metre }\) \(\newcommand {\cm }{\centi \metre }\) \(\newcommand {\dm }{\deci \metre }\) \(\newcommand {\m }{\metre }\) \(\newcommand {\km }{\kilo \metre }\) \(\newcommand {\as }{\atto \second }\) \(\newcommand {\fs }{\femto \second }\) \(\newcommand {\ps }{\pico \second }\) \(\newcommand {\ns }{\nano \second }\) \(\newcommand {\us }{\micro \second }\) \(\newcommand {\ms }{\milli \second }\) \(\newcommand {\s }{\second }\) \(\newcommand {\fmol }{\femto \mol }\) \(\newcommand {\pmol }{\pico \mol }\) \(\newcommand {\nmol }{\nano \mol }\) \(\newcommand {\umol }{\micro \mol }\) \(\newcommand {\mmol }{\milli \mol }\) \(\newcommand {\mol }{\mol }\) \(\newcommand {\kmol }{\kilo \mol }\) \(\newcommand {\pA }{\pico \ampere }\) \(\newcommand {\nA }{\nano \ampere }\) \(\newcommand {\uA }{\micro \ampere }\) \(\newcommand {\mA }{\milli \ampere }\) \(\newcommand {\A }{\ampere }\) \(\newcommand {\kA }{\kilo \ampere }\) \(\newcommand {\ul }{\micro \litre }\) \(\newcommand {\ml }{\milli \litre }\) \(\newcommand {\l }{\litre }\) \(\newcommand {\hl }{\hecto \litre }\) \(\newcommand {\uL }{\micro \liter }\) \(\newcommand {\mL }{\milli \liter }\) \(\newcommand {\L }{\liter }\) \(\newcommand {\hL }{\hecto \liter }\) \(\newcommand {\mHz }{\milli \hertz }\) \(\newcommand {\Hz }{\hertz }\) \(\newcommand {\kHz }{\kilo \hertz }\) \(\newcommand {\MHz }{\mega \hertz }\) \(\newcommand {\GHz }{\giga \hertz }\) \(\newcommand {\THz }{\tera \hertz }\) \(\newcommand {\mN }{\milli \newton }\) \(\newcommand {\N }{\newton }\) \(\newcommand {\kN }{\kilo \newton }\) \(\newcommand {\MN }{\mega \newton }\) \(\newcommand {\Pa }{\pascal }\) \(\newcommand {\kPa }{\kilo \pascal }\) \(\newcommand {\MPa }{\mega \pascal }\) \(\newcommand {\GPa }{\giga \pascal }\) \(\newcommand {\mohm }{\milli \ohm }\) \(\newcommand {\kohm }{\kilo \ohm }\) \(\newcommand {\Mohm }{\mega \ohm }\) \(\newcommand {\pV }{\pico \volt }\) \(\newcommand {\nV }{\nano \volt }\) \(\newcommand {\uV }{\micro \volt }\) \(\newcommand {\mV }{\milli \volt }\) \(\newcommand {\V }{\volt }\) \(\newcommand {\kV }{\kilo \volt }\) \(\newcommand {\W }{\watt }\) \(\newcommand {\uW }{\micro \watt }\) \(\newcommand {\mW }{\milli \watt }\) \(\newcommand {\kW }{\kilo \watt }\) \(\newcommand {\MW }{\mega \watt }\) \(\newcommand {\GW }{\giga \watt }\) \(\newcommand {\J }{\joule }\) \(\newcommand {\uJ }{\micro \joule }\) \(\newcommand {\mJ }{\milli \joule }\) \(\newcommand {\kJ }{\kilo \joule }\) \(\newcommand {\eV }{\electronvolt }\) \(\newcommand {\meV }{\milli \electronvolt }\) \(\newcommand {\keV }{\kilo \electronvolt }\) \(\newcommand {\MeV }{\mega \electronvolt }\) \(\newcommand {\GeV }{\giga \electronvolt }\) \(\newcommand {\TeV }{\tera \electronvolt }\) \(\newcommand {\kWh }{\kilo \watt \hour }\) \(\newcommand {\F }{\farad }\) \(\newcommand {\fF }{\femto \farad }\) \(\newcommand {\pF }{\pico \farad }\) \(\newcommand {\K }{\mathrm {K}}\) \(\newcommand {\dB }{\mathrm {dB}}\) \(\newcommand {\kibi }{\mathrm {Ki}}\) \(\newcommand {\mebi }{\mathrm {Mi}}\) \(\newcommand {\gibi }{\mathrm {Gi}}\) \(\newcommand {\tebi }{\mathrm {Ti}}\) \(\newcommand {\pebi }{\mathrm {Pi}}\) \(\newcommand {\exbi }{\mathrm {Ei}}\) \(\newcommand {\zebi }{\mathrm {Zi}}\) \(\newcommand {\yobi }{\mathrm {Yi}}\) \(\let \unit \si \) \(\let \qty \SI \) \(\let \qtylist \SIlist \) \(\let \qtyrange \SIrange \) \(\let \numproduct \num \) \(\let \qtyproduct \SI \) \(\let \complexnum \num \) \(\newcommand {\complexqty }[3][]{(\complexnum {#2})\si {#3}}\) \(\newcommand {\mleft }{\left }\) \(\newcommand {\mright }{\right }\) \(\newcommand {\mleftright }{}\) \(\newcommand {\mleftrightrestore }{}\) \(\require {gensymb}\) \(\newcommand {\intertext }[1]{\text {#1}\notag \\}\) \(\let \Hat \hat \) \(\let \Check \check \) \(\let \Tilde \tilde \) \(\let \Acute \acute \) \(\let \Grave \grave \) \(\let \Dot \dot \) \(\let \Ddot \ddot \) \(\let \Breve \breve \) \(\let \Bar \bar \) \(\let \Vec \vec \) \(\require {cancel}\) \(\newcommand {\Dm }{\operatorname {Dm}}\) \(\newcommand {\Vm }{\operatorname {Vm}}\) \(\newcommand {\Var }{\operatorname {Var}}\) \(\newcommand {\tcbset }[1]{}\) \(\newcommand {\tcbsetforeverylayer }[1]{}\) \(\newcommand {\tcbox }[2][]{\boxed {\text {#2}}}\) \(\newcommand {\tcboxfit }[2][]{\boxed {#2}}\) \(\newcommand {\tcblower }{}\) \(\newcommand {\tcbline }{}\) \(\newcommand {\tcbtitle }{}\) \(\newcommand {\tcbsubtitle [2][]{\mathrm {#2}}}\) \(\newcommand {\tcboxmath }[2][]{\boxed {#2}}\) \(\newcommand {\tcbhighmath }[2][]{\boxed {#2}}\) \(\newcommand {\toprule }[1][]{\hline }\) \(\let \midrule \toprule \) \(\let \bottomrule \toprule \) \(\def \LWRbooktabscmidruleparen (#1)#2{}\) \(\newcommand {\LWRbooktabscmidrulenoparen }[1]{}\) \(\newcommand {\cmidrule }[1][]{\ifnextchar (\LWRbooktabscmidruleparen \LWRbooktabscmidrulenoparen }\) \(\newcommand {\morecmidrules }{}\) \(\newcommand {\specialrule }[3]{\hline }\) \(\newcommand {\addlinespace }[1][]{}\) \(\def \LWRsiunitxrangephrase { \protect \mbox {to (numerical range)} }\) \(\def \LWRsiunitxdecimal {.}\)

4.1 Introduktion til polynomier

Vi starter med at definere, hvad et polynomium er:

  • Definition 4.1.1
    Et polynomium er en funktion som har en form som en af funktionerne i skemaet:

    .
    Forskrift Type
    \(f(x)=a\) Nultegradspolynomium
    \(f(x)=ax+b\) Førstegradspolynomium
    \(f(x)=ax^2+bx+c\) Andengradspolynomium
    \(f(x)=ax^3+bx^2+cx+d\) Tredjegradspolynomium
    \(f(x)=ax^4+bx^3+cx^2+dx+e\) Fjerdegradspolynomium

    Tallene \(a,b,c\ldots \) kaldes polynomiets koefficienter. Koefficienten \(a\) må ikke være nul. Skemaet kan fortsættes, så der findes polynomier af alle grader.

  • Eksempel 4.1.1
    Her er nogle eksempler på polynomier:

    .
    \(f(x)=2x^2-3x+4\) er et andengradspolynomium
    \(f(x)=4\) er et nultegradspolynomium
    \(f(x)=x^8\) er et ottendegradspolynomium
    \(f(x)=-x+2\) er et førstegradspolynomium

Øvelse 4.1.1

Hvilke af disse funktioner er polynomier?

  • a) \(f(x)=3x^2+2x+1\)

  • b) \(f(x)=\sqrt {x}\)

  • c) \(f(x)=2x+1\)

  • d) \(f(x)=\frac {1}{x}\)

  • e) \(f(x)=x^2\)

  • f) \(f(x)=-5\)

  • g) \(f(x)=5x^5-2x^4-3x^3+2x^2-4x+1\)

  • h) \(f(x)=-x^{250}\)

  • i) \(f(x)=x^{3{,}5}-2x\) (da \(3{,}5\) ikke er et helt tal)

  • j) \(f(x)=\frac {2}{3} x^2-\frac {1}{4}\)

  • k) \(f(x)=\pi \)

  • l) \(f(x)=0\)

Løsning 4.1.1

  • a) Er et polynomium

  • b) Er et ikke et polynomium

  • c) Er et polynomium

  • d) Er et ikke et polynomium

  • e) Er et polynomium

  • f) Er et polynomium

  • g) Er et polynomium

  • h) Er et polynomium

  • i) Er et ikke et polynomium

  • j) Er et polynomium

  • k) Er et polynomium

  • l) Er et polynomium

Øvelse 4.1.2

Bestem koefficienterne \(a\) og \(b\) for følgende førstegradspolynomier.

  • a) \(f(x)=2x+1\)

  • b) \(f(x)=x+1\)

  • c) \(f(x)=-2x+2\)

  • d) \(f(x)=-x\)

Løsning 4.1.2

  • a) \(a=2\) og \(b=1\)

  • b) \(a=1\) og \(b=1\)

  • c) \(a=-2\) og \(b=2\)

  • d) \(a=-1\) og \(b=0\)

Øvelse 4.1.3

Bestem koefficienterne \(a\), \(b\) og \(c\) for følgende andengradspolynomier:

  • a) \(f(x)=3x^2+2x+1\)

  • b) \(f(x)=x^2-2x+3\)

  • c) \(f(x)=-2x^2+1\)

  • d) \(f(x)=x^2\)

  • e) \(f(x)=39x^2-x\)

  • f) \(f(x)=-x^2+1{,}3\)

Løsning 4.1.3

  • a) \(a=3\), \(b=2\), \(c=1\)

  • b) \(a=1\), \(b=-2\), \(c=3\)

  • c) \(a=-2\), \(b=0\), \(c=1\)

  • d) \(a=1\), \(b=0\), \(c=0\)

  • e) \(a=39\), \(b=-1\), \(c=0\)

  • f) \(a=-1\), \(b=0\), \(c=1{,}3\)

Som det fremgår af skemaet, har alle polynomier en grad.

  • Eksempel 4.1.2
    Vi vil bestemme graden af polynomiet \(f(x)=2x^7-4x^2+1\). Vi ser at den højeste eksponent er \(7\) (eksponenterne er det som \(x\)’erne er opløftet i). Derfor er graden \(7\).

Øvelse 4.1.4

Bestem graden af følgende polynomier:

  • a) \(f(x)=2x^3+x-1\)

  • b) \(f(x)=x\)

  • c) \(f(x)=7x^8-x^6-x^3\)

  • d) \(f(x)=4\)

Løsning 4.1.4

  • a) \(3\)

  • b) \(1\)

  • c) \(8\)

  • d) \(0\)

Øvelse 4.1.5

Lineære funktioner er også en slags polynomier.

  • a) Hvilken slags? Tænk dig godt om, det er nemlig et lidt tricky spørgsmål.

Løsning 4.1.5

  • a) En lineære funktion er enten et nultegradspolynomium eller et førstegradspolynomium.

Øvelse 4.1.6

Bestem \(f(0)\) og \(f(-2)\) for følgende polynomier:

  • a) \(f(x)=3x-1\)

  • b) \(f(x)=2{,}7\)

  • c) \(f(x)=3x^2-5x+1\)

Løsning 4.1.6

  • a) \(f(0)=-1\) og \(f(-2)=-7\)

  • b) \(f(0)=2{,}7\) og \(f(-2)=2{,}7\)

  • c) \(f(0)=1\) og \(f(-2)=23\)

Polynomiers graf

Grafen for et polynomium kan se ud på mange måder alt afhængigt af graden.

(-tikz- diagram)

Grad: 0
   

(-tikz- diagram)

Grad: 1
   

(-tikz- diagram)

Grad: 2

(-tikz- diagram)

Grad: 3
   

(-tikz- diagram)

Grad: 4
   

(-tikz- diagram)

Grad: 5
Figur 4.1: Polynomier af forskellig grad

Vi ved at polynomier af grad \(0\) og \(1\) er lineære funktioner, så det er ingen overraskelse at graferne er linjer. Når vi går op i grader, ser vi, at der kommer flere nulpunkter og flere ekstrema. Man kan vise at et polynomium af grad \(n\) har højst \(n\) nulpunkter og højst \(n-1\) ekstrema.

  • Eksempel 4.1.3
    Her er er grafen for fjerdegradspolynomiet \(f(x)=x^4+2x^3-x^2-2x\):

    (-tikz- diagram)

    Vi ser at der det maksimale antal nulpunkter og ekstrema, nemlig \(4\) nulpunkter og \(3\) ekstrema.

    Her er er grafen for fjerdegradspolynomiet \(g(x)=x^4-1\):

    (-tikz- diagram)

    Vi ser at \(f\) har \(0\) nulpunkter og \(1\) ekstremum.

Som eksemplet viser, så siger graden kun noget om hvor mange nulpunkter og ekstrema der højst kan være. Ikke hvor mange der er. Dog kan man vise, at alle polynomier af ulige grad altid mindst et nulpunkt.

Øvelse 4.1.7

Antag at vi har et syvendegradspolynomium

  • a) Hvad kan man sige om antallet af nulpunkter?

  • b) Hvad kan man sige om antallet af ekstrema?

Løsning 4.1.7

  • a) Det har mellem \(1\) (da det er ulige grad) og \(7\) nulpunkter.

  • b) Det har højst \(6\) ekstrema.

Øvelse 4.1.8

Betragt grafen for funktionen \(f\):

(-tikz- diagram)

  • a) Hvad kan man sige om graden af \(f\)?

Løsning 4.1.8

  • a) Den er mindst \(6\).

Definitions og værdimængde for polynomier

Da man kan sætte alle tal ind i forskriften for et polynomium er definitionsmængden \(\mathbb {R}\) (dvs. alle tal). Hvis graden er lige vil værdimængden afhænge af det konkrete polynomium, mens polynomier af ulige grad har \(\mathbb {R}\) som værdimængde.

Øvelse 4.1.9

Lad \(f(x)=x^7-4x^6+3x^4-x^3+2x^2-x+1\)

  • a) Bestem \(\Dm (f)\) og \(\Vm (f)\).

Løsning 4.1.9

  • a) \(\Dm (f)=\mathbb {R}\) og \(\Vm (f)=\mathbb {R}\) (da graden er ulige)

Øvelse 4.1.10

Lad \(f(x)=-4\)

  • a) Bestem \(\Dm (f)\) og \(\Vm (f)\).

Løsning 4.1.10

  • a) \(\Dm (f)=\mathbb {R}\) og \(\Vm (f)=\{-4\}\).

Ekstra

I stedet for et skema kan vi lave en samlet definition for polynomier af forskellige grad.

  • Definition 4.1.2
    Et \(n\)’tegradspolynomium er en funktion på formen:

    \[f(x)=a_n x^n + a_{n-1}x^{n-1} + \cdots + a_2 x^2 + a_1 x + a_0,\]

    hvor \(a_n\neq 0\).

  • Eksempel 4.1.4
    Lad \(f(x)=2x\). Så er \(n=1\) og koefficienterne er \(a_1=2\) og \(a_0=0\).

Øvelse 4.1.11

Bestem, med udgangspunkt i den nye definition, graden og koefficienterne for følgende polynomier.

  • a) \(f(x)=x^2-3\)

  • b) \(f(x)=5\)

Løsning 4.1.11

  • a) \(n=2\), \(a_2=1\), \(a_1=0\) og \(a_0=-3\)

  • b) \(n=0\) og \(a_0=5\)

Øvelse 4.1.12

Lad \(f(x)=2x^4-7x^2+3x-1\)

  • a) Bestem \(a_{n-1}\)

  • b) Bestem \(a_{n-2}\)

Løsning 4.1.12

  • a) \(a_{n-1}=0\)

  • b) \(a_{n-2}=-7\)

Der findes et særligt polynomium, som ikke er omfattet af definitionerne i dette afsnit. Dette polynomium har forskriften \(f(x)=0\) og kaldes nulpolynomiet. Man kunne godt snydes til at tro at nulpolynomiet er et nultegradspolynomium, men nultegradspolynomiet har forskriften \(f(x)=a\), hvor \(a\neq 0\), så \(f(x)=0\), kan altså ikke være et nultegradspolynomium (da \(a=0\)). Nulpolynomiet er det eneste polynomium som ikke har en grad. Der findes dog nogle crazy matematikere som giver det graden \(-\infty \).

Øvelse 4.1.13

Lad \(f(x)=0\).

  • a) Er \(f\) et polynomium?

  • b) Er \(f\) et nultegradspolynomium?

  • c) Hvilken grad har \(f\)?

Løsning 4.1.13

  • a) Ja

  • b) Nej

  • c) Ikke nogen. Medmindre man er craaaaaazy!!! ...og giver det graden \(-\infty \).